Existing approaches to model innovation ecosystems have been mostly restricted to qualitative and small-scale levels or, when relying on traditional innovation indicators such as patents and questionnaire-based survey, suffered from a lack of timeliness, granularity, and coverage. Websites of firms (as well as research institutes and universities, which are not part of this study) are a particularly interesting data source for innovation research, as they are used for publishing information about potentially innovative products, services, and cooperation with other firms. Analyzing the textual and relational content on these websites and extracting innovation-related information from them has the potential to provide researchers and policy-makers with a cost-effective way to survey millions of businesses via their websites, gain insights into their innovation activity, their cooperation, and applied technologies. For this purpose, we propose a web mining framework for consistent and reproducible mapping of in novation ecosystems. In a large-scale pilot study we use a database with 2.4 million German firms to test our framework and explore firm websites as a data source. Thereby we put particular emphasis on the investigation of a potential bias when surveying innovation systems through firm website if only certain firm types can be surveyed using our proposed approach. We find that the availability of a websites and the characteristics of the website (number of subpages and hyperlinks, text volume, language used) differs according to firm size, age, location, and sector. We also find that patenting firms will be overrepresented in web mining studies. Web mining as a survey method also has to cope with extremely large and hyper-connected outlier websites and the fact that low broadband availability appears to prevent firms from operating their own website and thus excludes them from web mining analysis. Finally, we outline several approaches how to transfer firm website content into valuable innovation indicators.

Schlagworte

Web Mining; Web Scraping; R&D; R&I; STI; Innovation; Indicators; Text Mining