In the paper presented in this ZEW Research Seminar a field experiment is carried out with a major news outlet to quantify the economic returns to data and informational externalities associated with algorithmic recommendation. Automated recommendation can outperform a human editor in terms of user engagement, though this crucially depends on the amount of training data. Limited individual data or breaking news leads the editor to outperform the algorithm. Additional data helps algorithmic performance but decreasing economic returns set in rapidly. Investigating informational externalities highlights that personalized recommendation reduces consumption diversity. Moreover, users associated with lower levels of digital literacy and more extreme political views engage more with algorithmic recommendations.

Redner

Christian Peukert

Universidade Católica Portuguesa, Lissabon, Portugal und Eidgenössische Technische Hochschule Zürich (ETH Zürich), Schweiz

Standort

Klicken Sie auf den unteren Button, um den Inhalt nachzuladen.

Termin

29.11.2019 | 14:00 - 15:30 (CET)

Veranstaltungsort

ZEW – Leibniz-Zentrum für Europäische Wirtschaftsforschung

L 7, 1 68161 Mannheim

Raum

Heinz König Hall

Einheit
Kategorie
Schlagworte

Kontakt

Leitung Nachwuchsforschungsgruppe