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Abstract

The advantages of adaptive experiments have led to their rapid adoption in economics, other
fields, as well as among practitioners. However, adaptive experiments pose challenges for
causal inference. This note suggests a BOLS (batched ordinary least squares) test statistic
for inference of treatment effects in adaptive experiments. The statistic provides a precision-
equalizing aggregation of per-period treatment-control differences under heteroskedasticity.
The combined test statistic is a normalized average of heteroskedastic per-period z-statistics
and can be used to construct asymptotically valid confidence intervals. We provide simulation
results comparing rejection rates in the typical case with few treatment periods and few (or
many) observations per batch.
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1. Introduction

Adaptive experiments have become increasingly common because they allow for earning
while learning. Such designs have been applied, for example, by Kasy and Sautmann (2021),
Caria et al. (2023), Offer-Westort et al. (2021), Avivi et al. (2021), Tabord-Meehan (2023),
Hoffmann et al. (2023), Gaul et al. (2025). They combine exploration and exploitation
by updating treatment probabilities based on accumulated evidence. However, the depen-
dence of assignment on past outcomes breaks the usual assumptions of random sampling and
independent treatment assignment, complicating statistical inference. This is particularly
problematic when there is no clear difference between outcomes under different treatments.
For example, usual confidence intervals and bootstrap methods may overreject nullhypothe-
ses. Hadad et al. (2021) use large number-of-trials asymptotics to construct generally valid
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confidence intervals. Zhang et al. (2020) note that typically the number of trials is limited but
treatment assignment is adapted after each batch of observations arrives. For this important
case, they derive valid frequentist inference procedures using large batch size asymptotics un-
der homoskedasticity. This note extends their argument to the more general and empirically
relevant case of heteroskedastic outcomes, deriving the corresponding BOLS (batched OLS)
test statistic and explores its asymptotic distribution. The heteroskedastic case is relevant
because researchers usually design experiments such that not only the outcome means but
also their variances differ by treatment arm. Often the outcome is binary (success/failure),
which results in heteroskedasticity by construction. The results are in line with Hirano and
Porter (2025) who show that any limit distribution generated by joint choices of adaptive as-
signment rules and statistics can be represented within a unified Gaussian limit experiment.

2. Treatment Effects in Adaptive Experiments

Let periods be indexed by t = 1, . . . , T . In period t, there are N1,t treated and N0,t control
units, with nt = N1,t +N0,t and treatment share πt = N1,t/nt, so πt(1− πt) is a measure of
balance. Let the per-period difference in sample means be

∆̂t = Ȳ1,t − Ȳ0,t. (1)

For each treatment arm a ∈ {0, 1}, outcomes of individuals i = 1, 2, ...Na,t satisfy Yi,t(a) =
µa,t + εi,t(a). Within period t, the treated and control sample means are independent with
possibly different variances. Thus, εi,t(1) is independent of εj,t(0) for all i, j with εi,t(a)

i.i.d.∼
(0, σ2

a,t) and

Var(Ȳ1,t) =
σ2
1,t

N1,t

, Var(Ȳ0,t) =
σ2
0,t

N0,t

.

Hence, the variance of the period difference is

Var(∆̂t) = vt ≡
σ2
1,t

N1,t

+
σ2
0,t

N0,t

=
1

nt

(
σ2
1,t

πt

+
σ2
0,t

1− πt

)
. (2)

3. Inference

3.1. Scaling weights
In adaptive experiments, the selection probability πt is random because it depends on

the realized history. Thus, the variance of the OLS estimator across periods depends on the
selection probability which may result in asymptotic non-normality. Intuitively, if outcomes
under two treatments are hard to distinguish, either treatment might get assigned more
observations in repeated samples, and consequently the selection probability does not con-
centrate. Zhang et al. (2020) show that the selection probability is fixed, when conditioning
on the history up to a given batch, and that the batchwise OLS, scaled by the selection
probability, is asymptotically normal. We construct an estimator across periods scaled by
the inverse standard error, such that each period’s standardized mean difference has the
same influence. Let

wt =
1

√
vt
, S =

T∑
s=1

ws.
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Define the weighted average effect estimate

∆̂ =
T∑
t=1

wt

S
∆̂t. (3)

Remark 1. (i) When assignment probabilities and batch sizes are fixed and variances are
time-invariant, all periods are weighted equally in the combined statistic with 1/T .

3.2. Variance of the weighted estimator
By construction, w2

t vt = 1, hence the conditional variance given the realized weights is

Var(∆̂) =
T∑
t=1

(wt

S

)2

vt =
1

S2

T∑
t=1

w2
t vt =

T

S2
. (4)

Therefore,

SE(∆̂) =

√
Var(∆̂) =

√
T

S
. (5)

3.3. Heteroskedastic Z-statistic
Theorem 1 (Asymptotic Normality of the Heteroskedastic BOLS Statistic). For testing
H0 : ∆ = c, define the period z-scores and the combined statistic

zt,het =
∆̂t − c
√
vt

, Zhet =
∆̂− c

SE(∆̂)
=

1√
T

T∑
t=1

zt,het. (6)

Zhet
d−→ N(0, 1).

Asymptotic normality for fixed T and large batch sizes nt follows Zhang et al. (2020, cf.
Theorem 3), large-T asymptotics are covered by Hadad et al. (2021, cf. Theorem 4). Hi-
rano and Porter (2025) provide a unifying Gaussian limit representation. The asymptotic
distribution can be used to approximate their finite-sample distribution when constructing
confidence intervals.

3.4. Feasible implementation
In practice, the arm- and period-specific variances are unknown. Let σ̂2

a,t be consistent
estimators for a ∈ {0, 1} and the feasible test statistic Ẑhet.

Corollary 1 (Asymptotically valid confidence interval). Under the consistent variance es-
timation with feasible weighted estimator ∆̂F , the two-sided (1− α) confidence interval is

CI1−α(∆) = ∆̂F ± Ẑhet,1−α/2 SE(∆̂F ). (7)

Remark 2 (Variance estimation). (i) For small samples, one may prefer finite-sample–
adjusted within-period variance estimators (e.g., HC2/HC3). (ii) Under stationarity, arm
specific variances pooled across batches σ̂2

a,t

p−→ σ2
a may be preferable (cf. corollary 4, Zhang

et al., 2020). (iii) Under adaptivity, homoskedasticity (σ2
1,t = σ2

0,t = σ2), and time-invariant
batch size, the weights reduces to wt

S
=

√
N1,tN0,t/

∑T
s=1

√
N1,sN0,s, so batches with more

balanced sizes have larger weight. See Table A.1. (iv) it is straightforward to extend this to
k treatment arms and contextual settings.
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4. Monte Carlo Simulations

We compare three test statistics: the heteroskedasticity-robust OLS statistic, the BOLS
statistic derived under homoskedasticity, and our heteroskedasticity-robust BOLS statistic.
We report rejection rates, i.e., the proportion of simulated samples in which the null hy-
pothesis is rejected. Under H0 : ∆ = 0, this quantity measures the empirical size of the
test (nominal 5%). Data are generated using two common adaptive sampling algorithms,
ε-Greedy and Bernoulli Thompson Sampling in two-arm settings.
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(a) ε-Greedy, outcomes homoskedastic across arms
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(b) Thompson Sampling, homoskedastic across arms
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(c) ε-Greedy, outcomes heteroskedastic across arms
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(d) Thompson Sampling, heteroskedastic across arms

Notes: The figure shows the results of Monte Carlo simulations with 100,000 repetitions. Panels a) and c) show the distribution
of the heteroskedasticity-robust OLS test statistic, the homoskedastic BOLS test statistic, and the heteroskedasticity-robust
BOLS test statistic for data generated from an ε-Greedy experiment. The batch size is 500, the number of batches 25, the
experiment consists of two arms, each with an expected value of 1. In panel a) the standard deviation is 1 for arm one and
1 for arm two (homoskedasticity). In panel c) the standard deviation for arm one is 4 and for arm two is 1, everything else
remains equal. The red dotted line indicates the density of the standard normal distribution. Panel b) shows data generated
from a Bernoulli Thompson algorithm. The batch size is 500, the number of batches 25, the experiment consists of two arms
with an expected value of 0.5 and 0.5 (homoskedasticity). In panel d) the experiment consists of two arms with an expected
value of 0.7 and 0.4 (heteroskedasticity).

Figure 1: Simulation I: Non-normality of OLS and homoskedastic BOLS

Simulation I: Non-normality of OLS and homoskedastic BOLS. Figure 1 shows the empirical
distributions of the test statistics with 25 batches each with a size of 500 observations. For ε-
Greedy (left panels), both arms have Gaussian outcomes (think of log incomes) with mean 1,
with variances (12, 12) in panel a) and (42, 12) in panel c). The exploration rate is ε = 0.2.
Each design is repeated 100,000 times. Consistent with Zhang et al. (2020), panel a) shows
that OLS under zero-margin is non-normally distributed and homoskedastic BOLS recovers
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(a) ∆ = 0
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(b) ∆ = 1
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(c) ∆ = 2

Notes: This figure shows Monte Carlo simulation results for the ε-Greedy algorithm. Combinations of batch size and number
of batches increase along the horizontal axis. Rejection rates are denoted on the vertical axis. The parameter ∆ indicates the
difference between the true expected values of both arms. Each circle shows the average rejection rate for the given test statistic
which is indicated by color. For each batch size / number of batches combinations 10,000 repetitions were executed. In panel
(a) the expected value µ1 for arm 1 is 1 and µ2 for arm 2 is also 1. The standard deviation in all panels for arm 1 is σ1 = 2
and for arm 2 is σ2 = 1. In panel (b) the expected value is µ1 = 2 and µ2 = 1. For panel (c) it is µ1 = 3 and µ2 = 1. In the
batch size 10-10 scenario, on average, no test statistic could be calculated for one percent of the draws because one of the arms
was never played.

Figure 2: ε-Greedy

normality. But in the same setting under heteroskedasticity (panel c), both OLS and the
homoskedastic BOLS statistic deviate markedly from normality in the zero-margin case.
The homoskedastic BOLS statistic severely overrejects (17% instead of 5%). OLS yields
approximately correct rejection rates but exhibits non-normal behavior. In contrast, our
heteroskedasticity-robust BOLS statistic closely matches the standard normal distribution
and delivers correct 5% rejection rates in both cases.

For Thompson Sampling (right panels), we set Bernoulli success probabilities to (p1, p2) =
(0.5, 0.5) in panel b) and to (p1, p2) = (0.7, 0.4) in panel d). Panel b) confirms that OLS is
non-normally distributed and the homoskedastic BOLS test statistics fixes the problem. But
under mechanical heteroskedasticity in the non-zero margin case (panel d) the homoskedastic
BOLS statistic overrejects (≈ 6%) because it ignores heteroskedasticity. As the success
probabilities differ substantially, both OLS and our heteroskedasticity-robust BOLS statistic
closely match the standard normal distribution and deliver correct 5% rejection rates.

Simulation II: Rejection Rates at Small and Large Margins in Small and Large Samples. To
study behavior in smaller samples, we vary the number of batches (10–100) and batch sizes
(10–100). Each configuration is repeated 10,000 times. Figures 2 and 3 report rejection rates
of a 5% significance level test of H0 : ∆ = 0.

For ε-Greedy (Figure 2), the homoskedastic BOLS statistic is unreliable in all settings: it
overrejects sharply at ∆ = 0 and underrejects for positive margins. The heteroskedasticity-
robust OLS statistic performs reasonably well and improves as the margin grows. Across all
designs, our heteroskedasticity-robust BOLS statistic maintains rejection rates close to 5%.

For Thompson Sampling (Figure 3), the zero-margin case exhibits no heteroskedasticity,
so the heteroskedastic and the homoskedastic BOLS statistic perform well with rejection
rates near 5%. The heteroskedasticity-robust OLS overrejects somewhat. When margins
increase, inducing heteroskedasticity, the homoskedastic BOLS statistic begins to overreject,
while both robust statistics remain close to nominal size.
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(a) ∆ = 0
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(b) ∆ = 0.1
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(c) ∆ = 0.2

Notes: This figure shows Monte Carlo simulation results for the Bernoulli Thompson Sampling algorithm. Combinations of
batch size and number of batches increase along the horizontal axis. Rejection rates are denoted on the vertical axis. The
parameter ∆ indicates the difference between the true expected values of both arms. Each circle shows the average rejection rate
for the given test statistic which is indicated by color. For each batch size / number of batches combinations 10,000 repetitions
were executed. In panel (a) the success probability for arm 1 is p1 = 0.5 and arm 2 is also p2 = 0.5. In panel (b) it is p1 = 0.6
and p2 = 0.5. For panel (c) it is p1 = 0.7 and p2 = 0.5.

Figure 3: Bernoulli Thompson Sampling

5. Conclusion

Adaptive experiments have made selection-weighted inference increasingly relevant in
sequential settings where treatment assignment depends on past outcomes. The BOLS
selection-weighted statistic provides a simple, asymptotically valid procedure for inference
under heteroskedasticity, extending previous results derived for the homoskedastic case.
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Appendix A. Weight structure under homoskedasticity and heteroskedasticity

Table A.1: Weight structure under homoskedasticity and heteroskedasticity

Non-adaptive Adaptive

Homoskedastic case: σ2
1,t = σ2

0,t = σ2

Treatment share πt πt = π (fixed) πt depends on history

Variance vt vt =
σ2

nt π(1− π)
vt =

σ2

nt πt(1− πt)

Weight
wt

S

√
nt∑T

s=1

√
ns

√
nt πt(1− πt)∑T

s=1

√
ns πs(1− πs)

Heteroskedastic case: σ2
1,t ̸= σ2

0,t

Treatment share πt πt = π (fixed) πt depends on history

Variance vt vt =
1

nt

(
σ2
1,t

π
+

σ2
0,t

1− π

)
vt =

1

nt

(
σ2
1,t

πt

+
σ2
0,t

1− πt

)

Weight
wt

S

√
nt

(
σ2
1,t

π
+

σ2
0,t

1−π

)−1/2

∑T
s=1

√
ns

(
σ2
1,s

π
+

σ2
0,s

1−π

)−1/2

√
nt

(
σ2
1,t

πt
+

σ2
0,t

1−πt

)−1/2

∑T
s=1

√
ns

(
σ2
1,s

πs
+

σ2
0,s

1−πs

)−1/2

Notes: nt = N1,t +N0,t is total batch size, and πt = N1,t/nt is the treatment share. Under
homoskedasticity, weights depend on both sample size and balance πt(1− πt). Under heteroskedasticity,
weights additionally adjust for treatment-specific outcome variances σ2

a,t.
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